Escaping end of day fatigue.

I’ve been working as a software developer for three years now. I’ve noticed some days where I’m tired/exhausted after work.  This causes me to lose motivation and I just want to sleep. This is a “fake” feeling in my opinion because it’s not really true. I’ve been sitting all day staring at a computer so how much calories could I have possibly burned? It’s just a feeling and actually I have tons of energy that I can expend. When I cycle to work and back this tends not to happen. Doing something physical right after totally removes this feeling and gives me more energy.

It’s unnatural to spend 8-9 hours at a office focused on a computer screen. We were not built to do this. The great thing, is that the brain is highly malleable and we can reverse these effects by doing something more primal to get our brain chemistry back on track. The easiest way is exercise right after work.

Random Walkers

I implemented some JavaScript code to show the progression of a random walk. Find the code here.

Image Encryptor/Decryptor

The following application hides a message inside the pixels of an image. Click on the link below to try it!

Image Encrypter

Here is an image with a secret message. You can test the decryptor with it. I built this application using Spring MVC you can find the source code on github here.

There are many reasons why we use radian measure.  One reason is to make the following limit equal to one. This can only occur if is in radians. We will show why that is in this post.

Lets start with the derivative of . This identity is useful:  We can separate this limit into two parts. One part depends on multiplied by and another part that depends on and multiplied by . Now we just need to find the two limits below because the limit depends on and not on and so and can be taken out. Both of these limits are of the type zero over zero. We will now show that depends on .  Limit is limit multiplied by an expression which tends to zero. So if limit is finite then limit will be zero.

Now our next step is to see if limit is finite. I am going to show this fact numerically. We are going to calculate the sine of very small angles since our limit is when the angle is approaching zero.

TOOLBOX:

• Seed: • • With this toolbox I can get by the following:

Let then we have the following . We can solve for using this equation.

We can now get by using the third part of the tool box and then repeat the whole process to get . We can continue this as much as we want. The table below is constructed using this method. The fraction looks like it is converging. So we can reasonably say that limit is finite making limit zero. This makes the derivative of look like the following:   This constant is the result when we take the where is in degrees . The way we measure h is pretty arbitrary. We just assign the number 360 to a full circle. What if we assume the limit approaches one? If we do this the derivative is just . Then we can work backwards and see how the way we measure an angle changes. We will call this new way of measuring the angle the radian .

Let the following be true: Then the following is true for very small : We take the smallest angle from the above table: Since the angle is pretty small we can make the following approximation: Now we have a correspondence between angles in degrees and angles in radians. Since both numbers represent the same angle they should have the same ratio to the whole circle angle.   is approximately the number assigned to the whole circle in radian measure.

Wait a minute isn’t There is a way to show this geometrically… but I’m going to stop here.

Deriving the Work Energy Theorem – Don’t need to use differentials as fractions

When I first saw this derivation my teacher allowed differentials to cancel each other out. I found this strange since differential notation is based on a limiting process. How could they become simple fractions? I learned later that this is possible due to the chain-rule.

Here I will derive the Work Energy theorem in 1-D without canceling any differential fractions.

Using Newton’s Second Law: we replace the acceleration with the time derivative of velocity. Work is defined as the integral of force times distance integrated over its trajectory. The reason for this is that this integral can be evaluated.  Due to chain rule we have the following:  One of the terms is simply the velocity. This term below looks very interesting. It seems like someone took the derivative of a velocity function with respect to position using the chain rule.  is the square of the velocity. Now subbing into the work integral. We can see that the integral undoes the derivative since they are both respect to position. We should clarify that the integral is taken from the initial position to the final which correspond to the initial and final velocity.  Define Kinetic Energy as the following  Done! Let me know if I made a mistake.